目 次

2017年度豊田理化学研究所の活動		頁 1
《研究報告》		
《豊田理研フェロー》		
新奇強相関電子系物質の開発	上田 寛	23
銅イオンドープ $Na_2O-Al_2O_3-S_1O_2$ ガラスの水素による還元反応	野上正行	31
無機有機複合超格子熱電変換材料の化学創製 河本邦仁	・田 若鳴	41
鉄混合原子価錯体における連結異性の発現と制御のメスバウアー分光研究	小島憲道	51
フェムト秒発光分光計の高度化と白金ナノ構造体の発光現象	末元 徹	59
蛋白質の構造揺らぎと Anfinsen の熱力学仮説	平田文男	67
希土類合金近似結晶からの正12角形準結晶構造モテルの構築	石政 勉	73
電場誘起ESRによる高移動度有機トランジスタ中のキャリア観測	黒田新一	81
気相イオンの核磁気共鳴分光法の研究	富宅喜代一	89
《豊田理研客員フェロー》		
次世代燃料電池用の高活性・高耐久性を併せ持つ凹型正八面体Pt ₃ N ₁ /C電極触媒	岩 凙 康 裕	101
量子スピン液体の現状とダイヤモンドスピン格子(ET)Ag ₄ (CN) ₅		
齋藤 軍治·吉田幸大·平松孝章	・大 塚 晃 弘	. 111
前 里 光 彦・清 水 康 弘・土射津昌久	· 中村優斗	
伊藤 裕	・岸 田 英 夫	
液晶微小球レーサ	竹添秀男	119
《特 別 寄 稿》		
化学反応における対称性の破れの理論(8)		
光合成システム II の酸素発生 $CaMn_4O_5$ クラスターによる水分解反応のカルシ		
支援非ラジカル機構 山口 兆・庄 司 光 男		
山田 悟	・宮 川 晃 一	
《豊田理研スカラー》		
機械学習を組み合せた有機半導体溥膜におけるドーピング効果のハイスループッ	ト探索	
	丸山伸伍	144

siRNA 創薬の細胞内テリハリーイメージンクを指向した RNA 結合性蛍光プローフ	ブの関	癸		
SIGN TANK SAMUEL 17 77 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	佐藤		介	146
木質バイオマス有効利用へ向けた植物細胞壁改変技術の開発	楢本	:悟	史	148
MEMS2軸力センサを用いた微小液滴の滑りにおける接触面の力分布の計側 NGUYEN	I THAN	H VI	NH	150
三原色集積窒化物LED実現に向けた選択成長技術および発光色制御技術の高度化	関口	「寛	人	152
環状共役π分子の配置制御および、環状共役π分子同士の熱融合による単層カーオ ナノチューブの合成	ボン 東 城	友	都	154
バイオマーカー検出、及びその検出向上のための参照LSI混載型光学検出バイオー に関する研究	センサ 丸 山		史	156
多層運動評価の最適化に基づく複数の移動体の自律的・協調的な行動則設計	椿野	大	輔	158
価数揺動を利用した新規熱電材料物質の探索	井村	敬一	·郎	160
グラフェン液体セルの自在デザインと応用	北浦	į	良	162
水溶性空間を指向した分子設計に基づく不凍活性物質の開発	住井	. 裕	司	164
2軸濃度勾配を利用したラスマルテンサイトの組織サイズ決定因子の解明	知場	ıΞ	周	166
分子イメージング技術を用いた衝撃波発生条件における超音速マイクロ内部流れ 現象解明	の 半 田	太	郎	168
ロバストな細胞膜マーカ解析探針としての人工細胞脂質膜ナノビーズ	凑 元	; 幹	太	170
自己組織化の逆問題の解法	鳥飼	Œ	志	172
難脱硫成分を分離可能なオイル耐性ろ過フィルターの探索	藤井	義	久	174
発光団集積型かご型シルセスキオキサンの合成と応用	権	正	行	176
酸素分圧制御によるCe置換M型フェライト磁石の可能性の探索	和氣	'	剛	178
量子分子動力学法による水素・重水素・トリチウム分子凝集系の未知物性の解明	金	賢	得	180
W型フェライトの単結晶を用いた磁気異方性の学理構築	道 岡	千	城	182
リピドナノテクノロジーによる膜タンパク質分離デバイスの創成	岡 本	行	広	184

シリコン量子井戸構造への高効率スピン注入と室温スピントランジスタへの応用			
	山田道	洋	186
有機リン酸を原料に用いたリン酸鉄リチウムの合成 表面修飾およびナノ粒子化	に向けて		
	岡田健	司	188
電子受容性ポルフィリノイドの新規合成・修飾法の開発と材料応用	小出太	郎	190
糖鎖高分子を用いた人工抗体の開発	三浦佳	子	192
新規な薬剤結合増強法を目指したエストロゲン関連受容体とハロゲン化フェノー	ルの		
結合解析	松島綾	美	194
《スカラー共同研究》			
超臨界流体堆積法を用いたMEMS圧力センサの作製 百瀬 健・	・高 橋 英	俊	198
オリゴ (パラフェニレンエチニレン)を基盤とした高い配向 配列秩序と異方的電	荷		
輸送特性を有する革新的有機材料の創製 荒川優樹・石井佑弥・	櫻井庸	明	200
《特定課題研究》			
多元秩序制御による熱・体積機能の開拓	東正	樹	207
非線形エネルギー輸送による新しい物性理論の探求	土井祐	介	211
感染症数理モデルの解析に基づく新規ワクチンの定期接種導入に関する判断の客	観化		
	西浦	博	217
制御工学研究者と応用数学研究者の連携による革新的な制御理論構築	蛯原義	雄	223
// the control to the			
《豊田理研懇話会》 垂直磁気記録とビッグデータ時代	岩崎俊		230
平 巨 概 X 記述 C こ ノ ク テ・ ク 時 1 (石闸区		230
獲得免疫の驚くべき幸運	本庶	佑	231
数学一材料科学連携による挑戦	小谷元	子	232
論文リスト			235
講演リスト			243
受賞リスト			254

CONTENTS

Annual Reports of 2017 Fiscal Year		1
《Research Reports》		
《Fellow》		
Struggle for correlated electron materials	development Yutaka UEDA	23
Reduction Mechanisms of Cu^{2+} -Doped N in H_2 Gas	[a ₂ O–Al ₂ O ₃ –S ₁ O ₂ Glasses during Heating Masayuki NOGAMI	31
Chemical Synthesis of Inorganic/Organic	Hybrid-Superlattice Thermoelectrics Kunihito KOUMOTO and Ruoming TIAN	41
Study of the Linkage Isomerization and i Phase Transition for Iron Mixed-Vale	_	
Mossbauer Spectroscopy	Norimichi KOJIMA	51
Improvement of femtosecond luminescer	ice spectrometer and observation of	
luminescence in platinum nanostructu	rres Tohru SUEMOTO	59
Structural fluctuation of protein, and Anfi	insen's thermodynamic hypothesis Fumio HIRATA	67
Structure modeling of dodecagonal quasi	crystal from rare-earth metal based approximants Tsutomu ISHIMASA	73
Electron spin resonance spectroscopy of	charge carriers in high-mobility organic transistors Shin-ichi KURODA	81
Development of Gas-phase NMR Spectro	oscopy Kıyokazu FUKE	89
《Visiting Fellow》		
Octahedral PtN ₁ /C with Continuous, Cor a Highly Active and Durable Cathode	-	
Polymer Electrolyte Fuel Cell	Yasuhiro IWASAWA	101
Spin-Lattice Takaaki HIRA	ystem and (ET)Ag ₄ (CN) ₅ with a Diamond Gunzi SAITO, Yukihiro YOSHIDA MATSU, Akihiro OTSUKA, Mitsuhiko MAESATO MIZU, Masahisa TSUCHIIDU, Yuto NAKAMURA Hiroshi ITO and Hideo KISHIDA	111
Liquid Crystal Spherical Microlasers	Hıdeo TAKEZOE	119

«Special Contribution»

A calcium-assisted non-radical (CNR) mechanism for the oxygen-oxygen bond formation coupled with the intramolecular one electron transfer (OET) in the oxygen evolving complex (OEC) of photosynthesis II (PSII), the nature of the chemical bonds in the transition structure Kızashı YAMAGUCHI, Mıtsuo SHOJI, Hıroshı ISOBE 129 Satoru YAMADA and Koichi MIYAGAWA **«Scholarship**» High-throughput screening of doping effect of organic semiconductor thin films 144 using machine learning Shingo MARUYAMA Design of RNA-binding fluorescent probes for the analysis of delivery process of sıRNAs Yusuke SATO 146 Development of plant cell wall modification techniques for woody biomass Satoshi NARAMOTO 148 Measurement of force distribution on the contact area of sliding droplets using 150 a MEMS-based 2 axis force sensor NGUYEN Thanh Vınh Improvement of selective area growth and emission color control for realization Hıroto SEKIGUCHI 152 of three-primary color integrated LED Position Control of Carbon Nanorings with Conjugated Pi Orbitals and Synthesis of Single-walled Carbon Nanotubes Pyrolyzed from the Carbon Nanorings Tomohiro TOJO 154 Study on Optical Detection Bio-sensor for Biomarker Detection and Improving Satoshi MARUYAMA Detection 156 Design of Autonomous and Cooperative Control Laws for Multiple Vehicles via Optimization of Multi-Layer Performance Criteria Daisuke TSUBAKINO 158 Search for new thermoelectric materials with valence fluctuation Kenchiro IMURA 160 Fabrication and application of graphene liquid cells Ryo KITAURA 162 Development of Anti-Freezing Compounds Based on the Design of Hydrophilicity of Three Dimensional Structure 164 Yuji SUMII Clarification of determinant on size of lath martensite by using biaxial compositional gradation Tadachika CHIBA 166

Study on the phenomena in a supersonic microduct flow using a molecular imaging

Taro HANDA

168

technique

Nano-Beads Coated with Artificial Lipid Membranes toward Robust Prob		
Cell Membrane Interaction	Kanta TSUMOTO	170
Free-Energy Functional Method for Inverse Problem of Self Assembly	Masashı TORIKAI	172
Research for Oil Resistant Filter Membrane Suitable for Eliminating the F Desulfurizing Agent	Hardly Yoshihisa FUJII	174
Synthesis and Application of Luminophores-Integrated Polyhedral Oligon Silsesquioxane	neric Masayuki GON	176
Study on Ce Substituted M-type Ferrite by Controlling Oxygen Pressure	Takeshı WAKI	178
Intermolecular and Intramolecular Structure and Dynamics in Hydrogen, Deuterium and Tritium Liquids	KIM Hyeon-Deuk	180
Magnetic Anisotropy of W-type Ferrite Studied by Using Single Crystals	Chishiro MICHIOKA	182
Development of the membrane proteins separation device by lipid nanoted Y	chnology Tukıhıro OKAMOTO	184
Highly efficient spin injection into Si quantum-well structure for room ten spin transistor	nperature Michihiro YAMADA	186
Synthesis of organo-modified LiFePO ₄ nanoparticles from organo-phosph	onic acid Kenji OKADA	188
Development of Novel Synthesis and Modification Methods of Electron A Porphyrinoid and the Application for Materials	Accepting Taro KOIDE	190
Development of Artificial Antibody by Glycopolymers	Yoshiko MIURA	192
Evaluation of Halogen Bonds between an Estrogen-Related Receptor and Halogen-Containing Phenol Derivatives Ay	amı MATSUSHIMA	194
《Joint Research Projects》		
MEMS pressure sensor using Supercritical Fluid Deposition of Copper Takeshi MOMOSE and Hide	etoshı TAKAHASHI	198
Synthesis and characterization of novel oligo(p-phenylene ethynylene) and oxyletting highly aligned and ordered structures and anisotropic charge		
exhibiting highly aligned and ordered structures and anisotropic charge transport properties Yuki ARAKAWA, Yuya ISHII and		200
Special Promote Projects		205

Social Gathering of Toyota Pysical and Chemical Research Insitute	227
List of Papers	235
List of Presentations	243
List of Awards	254