遠紫外分光法 — 新しい σ 化学の世界を切り開く

尾 崎 幸 洋*

Far-ultraviolet Spectroscopy — Opening Up New σ Chemistry

Yukihiro OZAKI*

This review is concerned with the recent progress of ATR-far-ultraviolet (ATR-FUV) spectroscopy. ATR-FUV spectroscopy was established about 15 years ago by our group and has been used extensively in various fields of chemistry. In this review I discuss ATR-FUV and quantum chemical calculation studies of electronic structures of cyclic alkanes such as cyclohexane, methyl- and dimethyl cyclohexane, and decalin. Methyl cyclohexane shows a stronger ATR spectrum than cyclohexane. ATR-FUV spectra of equatorial and axial conformations of methyl cyclohexane are significantly different from each other probably because its HOMO-2 orbit destabilizes by 0.16 eV in the axial conformation. ATR-FUV spectroscopy and ultraviolet-resonance Raman spectroscopy have been used to explore the electronic structure and structure of four kinds of saccharides. It was found that amide I, II, and II bands of *N*-acetyl-D-glucosamine and *N*-acetyl-D-galactosamine are strongly resonance enhanced with their amide π - π^* transitions.

この報告はATR-遠紫外(far-ultraviolet)(ATR-FUV)分光法の最近の進歩に関するものである.ATR-FUV分光法は筆者らのグループによって確立され、今では多くの化学の分野で用いられている.今報告 では筆者らが最近行った二つの研究について述べる.最初の研究は環状アルカンに関するものである. この研究ではシクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、デカリンの電子構造、 遷移,配座依存性などについて調べた.equatorialとaxial配座のmethyl cyclohexaneのスペクトルはか なり異なる.これはおそらくaxial配座でHOMO-2軌道が0.16 eV不安定化するためであろう.ATR-FUV分光法と紫外共鳴ラマン分光法を用いて4種類の糖の電子状態や構造の研究が行われた.*N*-acetyl-D-glucosamineと*N*-acetyl-D-galactosamineのアミドI,Ⅱ,Ⅲバンドはアミド基のπ-π*遷移と強く共鳴す ることが分かった.

1. はじめに

これまで非常に難しかった凝集相の遠紫外(Far-ultraviolet, FUV)領域(120–200 nm, 6–10 eV)の吸収ス ペクトルの測定が,全反射吸収法(Attenuated Total Reflection : ATR)を導入することにより,化学の広範 囲な分野で行われるようになった¹⁻⁷⁾.FUV光は,その 波長領域からもわかるように、ほかの光と比較して非常 に大きい光子エネルギーをもつ光である(Fig. 1)¹¹.こ のFUV光は、 π 電子や σ 電子を含む多様な電子の遷移や 分子結合の開裂エネルギーに対応しており、ほぼすべて の物質はFUV光を強く吸収する^{1.3)}.しかし、これまで 凝集相におけるFUV領域の吸収スペクトルの測定はあ まり行われなかった.その理由には、固体や液体がこの 領域にきわめて強い吸収帯を示すこと、分光器を真空に

2023年2月19日 受理

*豊田理化学研究所客員フェロー

関西学院大学名誉教授,大学フェロー,理学博士

専門分野:分子分光学 — 基礎とその物理化学,分析化学への 応用

										Wav	velengt	h/nm
	800		400	30	00	2	200					120
NIR		Visible	((UV)	Deep (I	Deep Ultraviolet (DUV)		Far Ultraviolet (FUV)				
		2 4			6		8		1	10		
										Photor	n Energ	jy∕eV

Fig. 1 The wavelength or photon energy region of visible, ultraviolet (UV), deep-ultraviolet (DUV), and far-ultraviolet (FUV) light.

引く必要があること,目立った実用的応用が見当たらないこと,などがあった¹⁻⁷⁾.

そこで筆者らは、上記の問題点を解決するためにATR 法をFUV領域に導入した(ATR-FUVの装置について はおもに文献1-3に詳しく解説)¹⁻³⁾. ATR法を用いる と、プリズム表面から数十ナノメートルの深さに滲みだ した光を観測することになるので、非常に薄いセルを用 いた吸収スペクトルの測定と等価になる. このATR-FUV法を用いることで、大方の物質の固体、液体状態の FUV域における電子スペクトルを測定することができ る. このようにして筆者らは全く新しい電子分光学の分 野を切り開いた¹⁻¹⁹⁾. そしてATR-FUV法は、アルカン、 環状アルカン、アルコール、アミドなどの凝縮相中での 電子遷移や電子状態の研究^{10,11,18)}のみならず、水^{8,9)}、水 溶液^{8,9)}、表面吸着水^{9c)}、イオン液体¹³⁾、電解液^{13,17)}、液体 界面^{9c)}の研究や金属ナノ粒子修飾に伴う酸化チタンの電 子状態および光触媒活性の研究¹²⁾、ポリマー^{11b,14a,17)}、 カーボンナノ材料¹⁴⁾、生体物質¹⁹⁾など広範囲な化学の分 野に用いられつつある¹⁻¹⁹⁾.まさに新しい σ 化学の世界 を切り開きつつあると言っても過言でない、ATR-FUV 分光法の特色・利点を以下にまとめる¹⁻⁷⁾.

- ①水やアルカンのような、200-380 nmの紫外領域にはまったく吸収を示さない多くの物質がFUV領域には強い吸収を示す.したがって、FUV領域は、電子遷移、電子状態について非常に多くのユニークな知見を与える.
- ②水素結合や分子間相互作用の変化は電子状態の変化 に敏感に反映されるため、FUV分光法は水、水溶 液、有機、無機、生体物質の水素結合や分子間相互 作用の研究に適する。
- ③水は155 nm付近にきわめて強いピーク(このピー クの吸光度は赤外域に観測されるOH伸縮振動によ るピークの吸光度より大きい)を与える.しかもこ のピークが水の温度,pH,水和などにきわめて敏 感なため,水や水溶液の構造解析,分析,界面化 学,溶液化学の研究に向いている.実際,FUV分 光法は,水分子の電子状態やカチオン,アニオンの 水分子の第一電子遷移 ($\tilde{A} \leftarrow \tilde{X}$)への影響の研究,さ らには半導体洗浄液やミネラルウォーター,湧き水 の分析など幅広く用いられている.
- ④ATR-FUV分光法は数十nmの領域の極表面分光法 として有効である.

例えば多角入射 ATR-FUV 法による界面水の水素 結合の研究,タンパク質の吸着の研究,ポリマーの 極表面の研究,電気化学界面の研究などが行われて いる.

本稿では筆者が豊田理化学研究所客員フェローとして 行ったATR-FUV分光法を用いた環状アルカンの電子状 態の研究とATR-FUV分光法と紫外共鳴ラマン散乱分光 法を用いた糖の電子状態,構造の研究について述べる.

ATR-FUV分光法を用いた液体環状 アルカンの電子状態の研究

森澤と筆者らはATR-FUV分光法と量子化学計算法を 用いて液相のn-アルカン,枝分かれアルカンの電子スペ クトル,電子遷移,電子状態の研究を行ってきた¹⁰⁾. n-アルカンの電子スペクトルは150 nm付近にσ-Rydberg 遷移によるバンドを示す.このバンドの強度は鎖状アル カンの長さが長くなるとともに強くなり,また長波長シ フトする.これらの強度増大,長波長シフトの結果は, 量子化学計算によって説明された¹⁰⁾.

森澤らはTD-DFTやSAC-CI法を用いて液相でn-アル カン,枝分かれのアルカンの電子構造や遷移を詳しく調べ た¹⁵⁻¹⁹⁾. n-アルカンの150 nm付近のバンドはHOMO-2 からRydberg 3p,のものであると分かった¹⁰⁾. 被占及び 非占軌道のエネルギー差は炭素原子の数が増えるにつ れだんだん小さくなっていった. それにより, 150 nm のバンドの長波長シフトはHOMO-1の不安定化と Rydberg 3p,の安定化によるものであると分かった.

森澤と筆者らはこのアルカンの研究をシクロヘキサ ン、メチルシクロヘキサン、ジメチルシクロヘキサン、 デカリン、アダマンタンの研究へと発展させた¹⁸⁾.σ電 子の電子状態を解明することは、反応解析への足掛かり となる.また環状アルカンの電子状態の解明は、薬理活 性の研究へとつながる可能性がある.

2.1. ATR-FUV分光法と量子化学計算法を用いたシク ロヘキサンのメチル化によるσ電子状態の変化 についての研究

シクロヘキサンについては、σ結合の超共役や配座の 安定性、Axial、Equatorialの位置や環のCH₂基のヘテ ロ原子、ヘテロ置換基への置換についての研究がこれま でに行われてきている²⁰⁻²²⁾.本研究ではシクロヘキサン の置換、電子構造、遷移、配座依存性やメチルシクロヘ キサンの2つの異性体(Equatorial と Axial)及びジメチ ルシクロヘキサンの6つの異性体、*cis*-及び*trans*-デカリ ンを ATR-FUV 分光と量子化学計算から調べた.

Fig.2(a) に液体シクロヘキサンのATR-FUVスペクト ルを示す. それをKK変換して得たEスペクトル, その 二次微分スペクトルを**Fig.2**(b), (c) にそれぞれ示す¹⁸⁾. 二次微分スペクトルから、154と162 nmに吸収が確認さ れる. Fig. 3(a), (b) はシクロヘキサンの最安定構造であ る椅子形配座に対するTD-DFT計算によるシミュレー ションスペクトルとシクロヘキサンのHOMOおよび HOMO-2の等密度電子分布である. このスペクトルから 電子遷移の帰属を行った. 振動子強度の大きな順に帰属 を行うと、短波長側の吸収ピークがHOMO-2軌道から Rydberg 3pz軌道への電子遷移,長波長側のショルダー がHOMO軌道からRydberg 3p_x軌道またはRydberg 3p_y 軌道への電子遷移に起因する吸収であることが分かっ た¹⁸⁾. また,長波長側の遷移をT1,短波長側の遷移を T2と命名した.ATRスペクトルについてT1と帰属した 162 nmの吸収は、シミュレーションスペクトルで151.4 nmに計算される遷移に比べて非常に小さな強度である.

2.2. 液体のメチルシクロヘキサンのAxial 及びequatorial 配座とATRスペクトル

メチルシクロヘキサンの構造のエネルギー計算から, Equatorial 配座はAxial 配座よりも1.6 kcal/mol安定であ

ることが報告されている²³⁾. それに従い本研究では帰属 はEquatorialのみから行った. TD-DFT法の振動計算に より算出した各配座における熱補正加味の自由エネル ギー (ΔG)の値を eq.1 に代入して 298.15 K での存在率 を求めると.

$$\exp\left(-\frac{\Delta G(\text{Axial}) - \Delta G(\text{Equatorial})}{RT}\right) \quad (\text{eq.1})$$

Axial 配座は全体の1/1000であった. このAxial 配座の 不安定性の原因として、これまでは、メチル基がAxial位 に置換するとC3,C5位のAxial水素と反発するため、メ チル基自体が不安定となるからという立体構造の視点か らの説明がなされていた.本研究ではATR-FUVスペク トルと量子化学計算を用いて, Axial 配座の不安定化の 原因について調べた. Fig. 4(a), (b), (c) は, 液体のメ チルシクロヘキサンのATRスペクトル, ε スペクトル, その二次微分スペクトルをシクロヘキサンのそれらと比 較したものである¹⁸⁾. 両者のスペクトルは, いずれも互い によく似ていた. メチルシクロヘキサンのスペクトルを シクロヘキサンのスペクトルと比べると、短波長側の吸 収ピークは僅かに長波長シフトしたが、長波長側のショ ルダーは殆ど変化しなかった (Fig. 4(c)). Fig. 5(a), (b) はそれぞれメチルシクロヘキサンのAxial 配座と Equatorial 配座のシミュレーションスペクトルである¹⁸⁾. シミュレーションスペクトルから帰属すると、シクロヘ キサン同様, 短波長側の吸収はT2, 長波長側の吸収は T1の遷移に起因するものであるとわかった¹⁸⁾. また. Axial 配座のシミュレーションスペクトル (**Fig. 5**(a)) は、Equatorial 配座(Fig. 5(b)) 及びシクロヘキサンの もの(Fig. 3(a))とは形が大きく異なっていることが注 目される. この原因について、HOMO付近の被占軌道 のエネルギー及び電子の分布 (Fig. 6) から, 置換基が Axial位に入ることでHOMO-2軌道が0.16 kcal/mol不 安定化するためであると結論付けた¹⁸⁾

Fig. 3 (a) A simulation spectrum of cyclohexane by TD-DFT calculation. (b) Isodensity surfaces of HOMO and HOMO-2 of cyclohexane.

ジメチルシクロヘキサンとデカヒドロナフタレン(デカリン)によるC-Hσ軌道のエネルギー変化の実証

環反転では、Axial 配座と Equatorial 配座の変換が起 こるが、cis体とtrans体の変換は起こらない.また、メ チルシクロヘキサンのAxial-Equatorialのエネルギー差 から、ジメチルシクロヘキサンにおいて各メチル基は Equatorial-Equatorial、またはAxial-Equatorialの配座で 存在すると結論付けた¹⁸⁾.ジメチルシクロヘキサンの6

Fig. 5 Simulation spectra of axial (a) and equatorial (b) positions of methyl cyclohexane by TD-DFT calculation.

Fig. 6 Isodensity surfaces of HOMO, HOMO-1, and HOMO-2 of axial and equatorial positions of methyl cyclohexane.

Fig. 7 Structure of cyclohexane, methyl cyclohexane (axial and equatorial positions), dimethyl cyclohexane (cis-1,2-, 1,3-, and 1, 4-, trans-1, 2-, 1, 3-, and 1, 4-) and cis- and trans-decalin.

Fig. 8 (a) ATR spectra, (b) ε spectra, and second derivative spectra of the ε spectra of *trans*-1,2 and *cis*-1,2 dimethyl cyclohexane.

Fig. 9 Simulation spectra of cis-1,2- and trans-1,2-dimethyl cyclohexane by TD-DFT calculation.

160

Wavelength/nm

140

0.0

180

種類の異性体をFig.7に示す. Fig.8(a)-(c) はそれぞれ cis-1,2-及びtrans-1,2-ジメチルシクロヘキサンのATRス ペクトル, εスペクトルとその二次微分スペクトルを示 す. cis-1,3-及びtrans-1,3-, cis-1,4-及びtrans-1,4-ジメチ ルシクロヘキサンに関してはref.18を参照のこと. Fig.9 はcis-1.2-及びtrans-1.2-ジメチルシクロヘキサンのシ ミュレーションスペクトルである¹⁸⁾. それらから帰属す ると、cis-1.2-ジメチルシクロヘキサンではT1(153 nm), trans-1,2-ジメチルシクロヘキサンではT2 (148 nm) 及びT1 (154 nm) 遷移であると帰属された. cis-1,2-ジメチルシクロヘキサンにおけるT2遷移は, trans 体のものに比べて5 nm ほど長波長側に計算されており, ATRスペクトルでは長波長側の遷移に重なって観測さ れたと思われる. この原因に関して分子構造の観点か ら、メチルシクロヘキサン同様、Axial位に置換基が 入ったことによるものだと結論付けた¹⁸⁾.

デカヒドロナフタレン(以下,デカリン)はシクロへ キサン環2つから構成される多環式アルカンである (Fig. 7). デカリンには4α及び8α位の水素の方向について cis 体と trans 体が存在する (それぞれ, endo 体, exo 体とも呼 ばれる). Fig. 10(a)-(c) はデカリンのATR スペクトル, εスペクトルとその二次微分スペクトルを示す. trans-デ

Fig. 10 (a) ATR spectra, (b) ε spectra, and second derivative spectra of the ε spectra of *trans*- and *cis*-decalin.

カリンは*trans*-1,2-ジメチルシクロヘキサンと, *cis*-デカ リンは*cis*-1,2-ジメチルシクロヘキサンとスペクトルが 似ている. **Fig. 11**に示すシミュレーションスペクトルで は, *cis*-デカリンのT2遷移は*trans*-デカリンのそれと比 較して,長波長シフトしていることが分かる. このこと はATRスペクトルにおいて, *trans*-デカリンでは154 nm に確認された吸収が*cis*-デカリンでは確認されず,代わ りに164 nmの吸収が僅かながら増大していることが観 測される.

Fig. 11 Simulation spectra of *cis*- and *trans*-decalin by TD-DFT calculation.

まとめると、シクロヘキサンでは154 nmに吸収ピーク、162 nmにショルダーが確認された(Fig. 3(a)).量 子化学計算の結果から、154 nmのピークがT2、162 nm のショルダーがT1遷移に帰属されることが分かった. メチルシクロヘキサンでは、各吸収バンドに関してシク ロヘキサンより強度の強いATRスペクトルが得られた. また、コンフォマーの観点から、equatorial配座とaxial 配座ではスペクトルが大きく異なることが、量子化学計 算からも明らかとなった.この原因は、HOMO-2軌道 が0.16 eV不安定化したためであると考えられる.NBO 解析から、置換基がAxial位に入ることで全体のVicinal な相互作用が1.30 kcal/mol減少することを見つけた. このことを、ジメチルシクロヘキサン及びデカヒドロナ フタレンの*cis*体及び*trans*体を用いて実験的に観測する ことに成功した.

FUV分光法と紫外共鳴ラマン散乱分光法を 用いた糖の電子状態,構造の研究

筆者らは最近、イタリアElettraのシンクロトロンラマ ングループ(Rossi et al.)と波長可変紫外光源を用いて 種々の生体物質の紫外共鳴ラマンスペクトルの研究を

行っている.この研究の目的は、ATR-FUV分光法と紫 外共鳴ラマン分光法を組み合わせて、糖、脂質、タンパ ク質、糖タンパク質などの生体分子の電子状態、分子構 造の研究を行うことである. ATR-FUV分光法を用いる ことにより、生体分子の145-300 nmの領域の電子スペ クトルの測定が可能になり、電子状態、電子遷移の研究 ができる.またこの情報を用いて紫外共鳴ラマン散乱測 定に適した励起波長を選択することができる.一方,紫 外共鳴ラマン散乱を測定することにより、生体分子の発 色団部分(例えばタンパク質のアミド基やチロシン,ト リプトファン残基など)の構造,電子状態を調べること ができる.また、タンパク質の二次構造やタンパク質-核酸相互作用なども調べることができる. 紫外共鳴ラマ ン散乱の励起波長依存性の研究から、電子遷移に関する 知見やATR-FUVスペクトルのバンドの帰属に関する情 報を得ることも可能である、このように二つの分光法を 用いると生体分子の電子状態、電子遷移、構造、相互作 用に関して包括的は研究ができる可能性がある.

紫外共鳴ラマン分光法は1970年代からその研究は行われているが、これまでは主にレーザー光源を用いて、 ペプチド、タンパク質、核酸などの生体分子の構造の研 究に用いられてきた^{24.25)}.糖や脂質の共鳴ラマン散乱の 測定例はない.本研究の新規性は、i)ATR-FUV分光 法と紫外共鳴ラマン分光法を組み合わせて生体分子の構 造や電子状態を研究すること、ii)波長可変のシンクロ トロン放射光を用いること、ii)始めて糖の共鳴ラマン スペクトルを測定すること、である²⁵⁾.この日本—イタ リア共同研究は、FUV測定は近畿大学理工学部の森澤 研究室で,紫外共鳴ラマンの測定はイタリアのElettraの Rossiらのグループの研究室で行われた. Fig. 12は ElettraのEBL10.2-IUVSのビームラインの連続放射光 紫外共鳴ラマン散乱測定システムを示す^{24,25)}. 200–280 nmの励起光が使用可能である.

本研究では4種類の糖のATR-FUVスペクトルと紫外 共鳴ラマンの励起波長依存性を測定し、糖の構造や190 nm付近のバンドの帰属を明らかにすることを目的とし \hbar^{26} . Fig. 13(a) \hbar D-glucose, D-galactose, N-acetyl-Dglucosamine (GlcNAc), D-galactose, N-acetyl-D-galactosamine (GalNAc) のFUV-DUV (deep ultraviolet) 吸収 スペクトルを示す²⁶⁾. 主なバンドの帰属は,~140 nm; σ -Rydberg (CH₂, CH₃), ~170 nm ; n-Rydberg ($I - \bar{T}$ ル結合), ~190 nm; π - π * amide である. Fig. 13(a) の挿 図を見ると、galactoseは205 nm付近に弱いバンドを示 すことが分かる. GlcNAcとGalNAcは195 nm付近にア ミド基の π - π *遷移による吸収を示す. この π - π *遷移によ るバンドのバンド幅は, GalNAcの方がGlcNAcより広 い. Fig. 13(b) にFig. 13(a) の二次微分スペクトルを示 す. GalNAc, GlcNAcいずれも188と193 nmにバンド を示すが、GalNAcはさらに199 nmにもバンドを示す. 森澤らは量子化学計算を行った. その結果, GalNACと GlcNACでよく似た電子遷移、電子スペクトルになって いるものの、アミド基とピラン環の混ざり方が異なる結 果が得られた、これについてさらに考察を深める必要が ある.

Fig. 14(a), (b), (c), (d) は, それぞれglucose, galactose, GlcNAc, GalNAcの可視励起 (785 nm) のラマン

Fig. 12 Synchrotron-based ultraviolet resonance Raman spectra measurement system at Elettra, Italy (EBL10.2-IUVS beam line).

Fig. 13 (a) ATR-FUV spectra in the 145–300 nm region of glucose, galactose, GlcNAc and GalNAc. Inset, Enlargement of the 160–250 nm region of the ATR-FUV spectra of glucose and galactose. (b) Second derivative spectra of GlcNAc and GalNAc.

Fig. 14 The 785-nm excited Raman spectra of the saccharides aqueous solutions. (a) glucose, (b) galactose, (c) GlcNAc, and (d) GalNAc.

スペクトルである²⁶⁾. これらのスペクトルは非共鳴のラ マンスペクトルである. Glucose と galactose のスペクト ルは全体的によく似ているが、1063 cm⁻¹に共通して観 測されるバンドは、C-O伸縮振動によるものである. 1500–1200 cm⁻¹に観測されるバンドはCH₂とCH₂OH変 角振動によるものである. 1650 cm⁻¹のブロードなバン ドは、水の変角振動である. 1200-900 cm⁻¹の領域は Glucoseとgalactoseでかなり異なっている. この領域に はC-O, C-C伸縮振動が数多く観測される. この領域が 両者のスペクトルで大きく異なるのは、C-4 OH 基の配 向が異なることによる. GlcNAcとGalNAcのスペクト ルは1200-900 cm⁻¹の領域のC-O, C-C伸縮振動による

Fig. 15 Raman spectra of (a) GlcNAc and (b) GalNAc aqueous solutions excited with 213, 226, 250, and 785 nm.

バンドの他に、アミド基によるバンドが1640 cm⁻¹ (ア ミド I) と1400–1250 cm⁻¹ (アミド II) に観測される.

Fig. 15(a), (b) は、それぞれGlcNAcとGalNAcのラ マンスペクトルの励起波長依存性(213, 226, 250, 785 nm)を示す²⁶⁾. 両者のスペクトルは明確な励起波長依 存性を示す.例えば、1565 cm⁻¹のバンドは、785 nm励 起ではほとんど観測されないが、213, 226 nm励起で非 常に強くなる. このバンドはアミド II に帰属され、アミ ド基の π - π * 遷移に共鳴しているものと思われる.アミド Iによる1645 cm⁻¹のバンドは226 nm励起でかなり強 くなり、213 nm励起ではかなり弱くなる.アミド I と アミド II の相対強度は213と250 nmで逆転する.同じ アミド基によるバンドでも励起波長超依存性ははっきり と異なるという点は興味深い.共鳴の仕方に違いがある ことを示している.950 cm⁻¹のバンドは、励起波長が短 くなるにつれ、その強度が弱くなった.950 cm⁻¹のバ ンドは、アミド V によるものと考えられる.**Fig.16** は GlcNAc と GalNAc の1652, 1565, 1488, 1382, 1326 cm⁻¹

(O) 1326 cm⁻¹ (\times) 1382 cm⁻¹ (\diamondsuit) 1488 cm⁻¹ (\Box) 1565 cm⁻¹ (\triangle) 1652 cm⁻¹

Fig. 16 Relative intensities of the bands at (○) 1326 cm⁻¹, (×) 1382 cm⁻¹, (◇) 1488 cm⁻¹, (□) 1565 cm⁻¹, and (△) 1645 cm⁻¹ with excitation wavelengths of 213, 226, and 250 nm for (a) GlcNAc aqueous solution and (b) GalNAc aqueous solution.

のバンドの励起波長依存性を示す²⁶⁾. 多くのバンドが 226 nm励起で最も強くなったが, 1488 cm⁻¹のバンドは 213 nm励起で最も強くなった. Fig. 15と Fig. 16の結果 は, 180-210 nmの領域に対称性の異なる何本かの電子 遷移が存在し, これらの遷移の前期共鳴に対する感受性 が異なるものと考えられる. 共鳴のメカニズムについて は励起波長依存性のさらなる解析や量子化学計算のさら なる進歩が必要である.

Fig. 17(a), (b) はそれぞれ Glucose と Galactose 水溶液 (1M) のラマンスペクトルの励起波長依存性 (213, 226, 250, 785 nm) を示す²⁶⁾. 主にC-O, C-C 伸縮振動のバン ドが観測される 1300–1000 cm⁻¹の領域のバンドの強度 は励起波長によってほとんど変化しない. 一方, CH₂変 角振動によるバンドが観測される 1500–1300 cm⁻¹の領 域のバンドの強度ははっきりと変化する. Glucose, Galactose いずれも 226 nm 励起で強度が最も強くなり, はっきりした励起波長依存性が見られるが, Glucose で 特に顕著である (**Fig. 17**(a)). **Fig. 13**(a) の挿図から明ら かなように, 180–230 nm の領域には Glucose, Galactose いずれも弱いバンドが観測される. 1500–1300 cm⁻¹の バンドが213, 226, 250 nm の励起で強くなるのは, CH₂ のバンドがこれらの遷移に共鳴するからであると考えら れる.

以上のように、今回の4種類の糖のATR-FUVスペク トル、紫外励起ラマンスペクトルの励起波長依存性の研 究から、以下のような興味深い研究結果が得られた²⁶⁾. i) GlcNAcとGalNAcは195 nm付近にアミド基の π - π^* 遷移による吸収を示す.この π - π *遷移によるバンドのバ ンド幅は、GalNAcの方がGlcNAcより広い. ii) 森澤ら は量子化学計算を行ってGalNACとGlcNACはよく似た 電子遷移、電子スペクトルを示すが、アミド基とピラン 環の混ざり方が両者で異なることを明らかにした. iii) アミドⅠ, アミドⅡ, アミドⅢは異なる励起波長依存性 を示した. これらのアミドのバンドの励起波長依存性の 結果は、おそらく180-210 nmの領域に対称性の異なる 何本かの電子遷移が存在し、これらの遷移の前期共鳴に 対する感受性が異なるものと考えられる.特に興味深い のは、アミドⅠとアミドⅡの相対強度が226 nm励起を 境に逆転することである. iv) GlucoseとGalactoseの CH₂変角振動によるバンドが観測される 1500-1300 cm⁻¹ の領域のバンドの強度が明確な励起波長依存性を示し た. 励起波長依存性は、Glucoseで特に顕著である. 180-230 nmの領域にはGlucose, Galactose いずれも弱いバン ドが観測される.1500-1300 cm⁻¹のバンドが213,226, 250 nmの励起で強くなるのは、CH2のバンドがこれら の遷移に共鳴するからであると考えられる.

Fig. 17 Raman spectra of (a) glucose and (b) galactose aqueous solutions excited with 213, 226, 250, and 785 nm.

さらに研究を進めるために、より詳細な励起波長依存 性の研究,量子化学計算のさらなる進展が望まれる.

謝 辞

本報告のうちATR-FUV法による環状アルカンの研究 は、近畿大学の森澤勇介准教授と檜垣優吾院生との共同 研究である.ATR-FUV法と紫外共鳴ラマン分光法を用 いた糖の研究は関西学院大学の佐藤英俊教授、橋本剛佑 助教、近畿大学の森澤勇介准教授、イタリアElettraの Barbara Rossi博士との共同研究である.共同研究者に 感謝する.

参考文献

- 1) Y. Ozaki and S. Kawata, eds., "Far- and Deep Ultraviolet Spectroscopy," Springer (2015).
- a) Y. Ozaki, Y. Morisawa, A. Ikehata and N. Higashi, Appl. Spectrosc., 66 (2012) 1;b) N. Higashi, A. Ikehata and Y. Ozaki, *Rev. Sci. Instruments.*, 78 (2012) 103107.
- Y. Morisawa, I. Tanabe and Y. Ozaki, Advances in Far-Ultraviolet Spectroscopy in the Solid and Liquid States, in *"Frontiers and Advances in Molecular Spectroscopy,"* (ed J. Laane), Elsevier, pp. 251-286.
- 4) Y. Ozaki and I. Tanabe, Analyst, 141, 3692 (2016).
- 5) a) Y. Ozaki, Bull. Chem. Soc. Jpn., 92 (2019) 629; b) 尾崎 幸洋, Mol. Sci., 14 (2020) A0114.
- Y. Ozaki, K. B. Bec, Y. Morisawa, S. Yamamoto, I. Tanabe, C. W. Huck and T. S. Hofer, *Chem. Soc. Rev.*, **50** (2021) 10917.
- Y. Ozaki, Y. Morisawa, I. Tanabe and K. B. Bec, *Spectro-chim. Acta A*, 253 (2021) 119549.
- a) A. Ikehata, N. Higashi and Y. Ozaki, *J. Chem. Phys.*, **129** (2008), 234510; b) A. Ikehata, M. Mitsuoka, Y. Morisawa, N. Kariyama, N. Higashi and Y. Ozaki, *J. Phys. Chem. A*, **114** (2010) 8319.
- 9) a) T. Goto, A. Ikehata, Y. Morisawa and Y. Ozaki, J. Phys. Chem. A, 117 (2013) 2517; b) T. Goto, A. Ikehata, Y. Morisawa and Y. Ozaki, J. Phys. Chem. Lett., 6 (2015) 1022; c) T. Goto, K. B. Bec and Y. Ozaki, Phys. Chem. Chem. Phys., 19 (2017) 21490.
- a) Y. Morisawa, A. Ikehata, N. Higashi and Y. Ozaki, *J. Phys. Chem. A*, **115** (2011) 562 ; *b*) Y. Morisawa, S. Tachibana, M. Ehara and Y. Ozaki, *J. Phys. Chem. A*, **116** (2012) 11957;
 c) Y. Morisawa, S. Tachibana, A. Ikehata, Fukuda, M. Ehara and Y. Ozaki, *ACS Omega*, **2** (2017) 618.
- a) Y. Morisawa, M. Yasunaga, R. Fukuda, M. Ehara and Y. Ozaki, J. Chem. Phys., **139** (2013) 154301;b) Y. Morisawa, M. Yasunaga, H. Sato, R. Fukuda, M. Ehara and Y. Ozaki, J. Phys. Chem. B, **118** (2014) 11855.

- 12) a) I. Tanabe and Y. Ozaki, *Chem. Commun.*, **50** (2014) 2117; b) I. Tanabe, T. Ryoki and Y. Ozaki, *Phys. Chem. Chem. Phys.*, **16** (2014) 7749; c) I. Tanabe, T. Ryoki and Y. Ozaki, *RSC Adv.*, **5** (2015) 13648.
- 13) a) I. Tanabe, A. Suyama, T. Sato and K. Fukui, Analyst,
 143 (2018) 2539; b) I. Tanabe, A. Suyama, T. Sato and K. Fukui, Anal. Chem., 91 (2019) 3436; c) M. Imai, I. Tanabe,
 A. Ikehata, Y. Ozaki and K. Fukui, Phys. Chem. Chem. Phys., 22 (2020) 21768.
- 14) a) K. B. Bec, Y. Morisawa, K. Kobashi, J. Grabska, I. Tanabe, E. Tanimura, H. Sato, M. J. Wojcik and Y. Ozaki, *Phys. Chem. Chem. Phys.*, **20** (2018) 8859; b) K. B. Bec, Y. Morisawa, K. Kobashi, J. Grabska, I. Tanabe and Y. Ozaki, *J. Phys. Chem. C*, **122** (2018) 28998.
- 15) a) N. Ueno, T. Wakabayashi, H. Sato and Y. Morisawa, J. Phys. Chem. A, **123** (2019) 10746.
- Y. Morisawa, E. Tanimura, M. Ehara and H. Sato, *Appl. Spectrosc.*, 75 (2021) 971.
- N. Ueno, M. Takegosi, A. Zaitceva, Y. Ozaki and Y. Morisawa, J. Chem. Phys., 156 (2022) 704705.
- Y. Morisawa, Y. Higaki and Y. Ozaki, J. Phys. Chem. A, 125 (2021). DOI: 10.1039/d0cs01602k
- 19) K. Hashimoto, Y. Morisawa, M. Tortora, B. Rossi, Y. Ozaki and H. Sato, *Appl. Spectrosc.* (2022). DOI: 10.1177/ 00037028211070835
- 20) I. V. Alabugin, J. Org. Chem., 65 (2000) 3910.
- D. S. Ribeiro and R. Rittner, J. Org. Chem., 268 (2003) 6780.
- 22) I. V. Alabugin, G. dos Passos Gomes and M. A. Abdo, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 9 (2019) e1389.
- 23) F. A. L. Anet, C. H. Bradley and G. W. Buchanan, J. Am. *Chem. Soc.*, **93** (1971) 258.
- 24) B. Rossi, C. Bottari, S. Catalini, F. D'Amico, A. Gessini and C. Masciovecchio, Synchrotron based UV Resonant Raman scattering for material science, in "*Molecular and Laser Spectroscopy*", Vol. 2 (eds. V. P. Gupta and Y. Ozaki), Elesevier, (2020) pp. 447-478.
- 25) B. Rossi, et al., Synchrotron based UV Resonance Raman Spectroscopy for Polymer Characterization, in "Spectroscopic Techniques for Polymer Characterization. Methods, Instrumentation, Applications", (eds. Y. Ozaki and H. Sato), Wiley-VCH, (2021) pp. 183-225.
- 26) K. Hashimoto, F. Matroodi, B. Rossi, Y. Morisawa, Y. Ozaki and H. Sato, *to be submitted*.